1,007 research outputs found

    Stacked-ring electrostatic ion guide

    Get PDF
    In 1969 Bahr, Gerlich, and Teloy introduced an rf device that consisted of a stack of ring electrodes, with charge sign alternation between neighboring rings, to store or transport ions. Here we propose to operate such a device with electrostatic potentials rather than rf potentials: ions that move axially along the center of the guide are thereby subjected to an oscillating electrical potential similar to the sinusoidal rf potential in familiar rf-only multipole ion guides. The oscillating potential of the stacked-ring static ion guide focuses ions by exerting a field gradient force on the ions so as to push ions toward the central axis where the field is weakest. The stacked-ring ion guide produces an effectively static “pseudopotential” that is much steeper at the edge (potential varies as er) compared to a quadrupole or octupole guide (for which the potential varies as r2 or r6, where r is radial position) and that is much flatter near the center of the guide (for potentially higher ion flux). Advantages of the new ion guide include static rather than rf potential, low electrical noise, a large field-free region near the central axis of the guide, and simple mechanical construction. A disadvantage of the stacked-ring ion guide is that high ion axial kinetic energy is required; ions with axial kinetic energy that is too low may be trapped in the shallow pseudopotential well between adjacent ring electrodes

    William Eppes Cormack (1796–1868): The Later Years

    Get PDF

    Sympathetic cooling of trapped negative ions by self-cooled electrons in a fourier transform ion cyclotron resonance mass spectrometer

    Get PDF
    Hot electrons confined in a Penning trap at 3 tesla self-cool to near room temperature in a few seconds by emission of cyclotron radiation. Here, we show that such cold electrons can “sympathetically” cool, in ~10 s, laser desorbed/ionized translationally hot Au− or C70− ions confined simultaneously in the same Penning trap. Unlike “buffer gas” cooling by collisions between ions and neutral gas molecules, sympathetic cooling by electrons is mediated by the mutual long-range Coulomb interaction between electrons and ions, so that translationally hot ions can be cooled without internal excitation and fragmentation. It is proposed that electrosprayed multiply charged macromolecular ions can be cooled sympathetically, in the absence of ion-neutral collisions, by self-cooled electrons in a Penning trap

    Selective parent ion axialization for improved efficiency of collision-induced dissociation in laser desorption-ionization Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    AbstractWe have systematically established the excitation frequency, amplitude, duration, and buffer gas pressure for optimal axialization efficiency and mass selectivity of quadrupolar excitation-collisional cooling for isolation of parent ions for collision-induced dissociation in Fourier transform ion cyclotron resonance mass spectrometry. For example, at high quadrupolar excitation amplitude, ion axialization efficiency and selectivity are optimal when the applied quadrupolar excitation frequency is lower than the unperturbed ion cyclotron frequency by up to several hundred hertz. Moreover, at high buffer gas pressure (10−6 Torr), quadrupolar excitation duration can be quite short because of efficient collisional cooling of the cyclotron motion produced by magnetron-to-cyclotron conversion. Efficiency, detected signal magnitude, and mass resolving power for collision-induced dissociation (CID) product ions are significantly enhanced by prior parent ion axilization. With this method, we use argon CID to show that C+94 (m/z 1128) formed by Nd:YAG laser desorption-ionization behaves as a closed-cage structure

    FIS workshop on Global synthesis of climate impacts on fish distribution and growth and implications for Scottish fisheries : FIS028

    Get PDF
    All workshop attendees and remote participants (identified in Table 1) are thanked for their contributions to presentations, discussion and this report. A. Audzijonyte, R. Allman, B. Bogstad, C. Champion, T. Essington, M. Haltuch, A. Haynie, T. Helser, E. Hjörleifsson, J. Morrongiello, M. Peck, G. Pecl, J. Pinnegar, M. Pinsky, C. Stawitz, B. Townhill, J. Thorson, and P.D. van Denderen contributed text to this report. George R. West is thanked for his participation in the public event. Jens Rasmussen assisted in the development of recommendations for future research. The assistance of Mindfully Wired Communications (Harriet Yates and Ginny Russell) is gratefully acknowledged.Publisher PD

    Identification of Potential Glycoprotein Biomarkers in Estrogen Receptor Positive (ER+) and Negative (ER-) Human Breast Cancer Tissues by LC-LTQ/FT-ICR Mass Spectrometry

    Get PDF
    Breast cancer is the second most fatal cancer in American women. To increase the life expectancy of patients with breast cancer new diagnostic and prognostic biomarkers and drug targets must be identified. A change in the glycosylation on a glycoprotein often causes a change in the function of that glycoprotein; such a phenomenon is correlated with cancerous transformation. Thus, glycoproteins in human breast cancer estrogen receptor positive (ER+) tissues and those in the more advanced stage of breast cancer, estrogen receptor negative (ER-) tissues, were compared. Glycoproteins showing differences in glycosylation were examined by 2-dimensional gel electrophoresis with double staining (glyco- and total protein staining) and identified by reversed-phase nano-liquid chromatography coupled with a hybrid linear quadrupole ion trap/ Fourier transform ion cyclotron resonance mass spectrometer. Among the identified glycosylated proteins are alpha 1 acid glycoprotein, alpha-1-antitrypsin, calmodulin, and superoxide dismutase mitochondrial precursor that were further verified by Western blotting for both ER+ and ER- human breast tissues. Results show the presence of a possible glycosylation difference in alpha-1-antitrypsin, a potential tumor-derived biomarker for breast cancer progression, which was expressed highest in the ER- samples

    Electrospray and Photoionization Mass Spectrometry for the Characterization of Organic matter in Natural Waters: A Qualitative Assessment

    Get PDF
    Fourier-transform ion cyclotron resonance mass spectrometry (MS) has demonstrated potential to revolutionize the fields of limnology and chemical oceanography by identifying the individual molecular components of organic matter in natural waters. The use of MS for this purpose is made possible by the electrospray technique which successfully ionizes polar, nonvolatile organic molecules. Another recently developed ion source, atmospheric pressure photoionization (APPI), extends MS capabilities to less polar molecules. This article presents early results on the application of APPI MS to natural organic matter. We compare APPI MS and electrospray MS data for dissolved organic matter from Lake Drummond (Virginia, USA). Collectively, electrospray and APPI MS identify more than 6000 molecular species to which we assign unique molecular formulas. Fewer than 1000 molecular species are common to both electrospray and APPI mass spectra, indicating that the techniques are highly complementary in the types of molecules they ionize. Access to a broad range of molecules provided by combining APPI and electrospray has prompted a qualitative analysis. The goal is to assess the extent to which molecular MS data correspond with elemental (CHNOS) and structural characteristics determined by combustion elemental analyses and 13C nuclear magnetic resonance (NMR). Because the data obtained by these different methods are not directly comparable, we propose a novel data analysis procedure that facilitates their comparison. The bulk elemental composition calculated from electrospray MS data are in close agreement (±15%) with values determined by combustion elemental analysis. APPI and electrospray MS detect protein contributions in agreement with 13C NMR (6 wt %) but underestimate carbohydrates relative to 13C NMR. Nevertheless, MS results agree with NMR on the relative proportions of noncarbohydrate compounds in the organic matter: lignins \u3e lipids \u3e peptides. Finally, we use a molecular mixing model to simulate a 13C NMR spectrum from the MS datasets. The correspondence of the simulated and measured 13C NMR signals (74%) suggests that, collectively, the molecular species identified by APPI and electrospray MS comprise a large portion of the organic matter in Lake Drummond. These results add credibility to electrospray and APPI MS in limnology and oceanography applications, but further characterization of ion source behavior is fundamental to the accurate interpretation of MS data

    Scotland Registry for Ankylosing Spondylitis (SIRAS) – Protocol

    Get PDF
    Funding SIRAS was funded by unrestricted grants from Pfizer and AbbVie. The project was reviewed by both companies, during the award process, for Scientific merit, to ensure that the design did not compromise patient safety, and to assess the global regulatory implications and any impact on regulatory strategy.Publisher PD

    Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation

    Get PDF
    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis

    Body mass index relates weight to height differently in women and older adults

    Get PDF
    This study was partly supported by the University of Manchester’s Health eResearch Centre (HeRC) funded by the Medical Research Council (MRC) Grant MR/K006665/1 and partly funded by the ESRC Obesity eLab Grant (RES-149-25-1076).Background Body mass index (BMI) tends to be higher among shorter adults, especially women. The dependence of BMI–height correlation on age and calendar time may inform us about temporal determinants of BMI. Methods Series of cross-sectional surveys: Health Survey for England, 1992–2011. We study the Benn Index, which is the coefficient in a regression of log(weight) on log(height). This is adjusted for age, gender and calendar time, allowing for non-linear terms and interactions. Results By height quartile, mean BMI decreased with increasing height, more so in women than in men (P < 0.001). The decrease in mean BMI in the tallest compared with the shortest height quartile was 0.77 in men (95% CI 0.69, 0.86) and 1.98 in women (95% CI 1.89, 2.08). Regression analysis of log(weight) on log(height) revealed that the inverse association between BMI and height was more pronounced in older adults and stronger in women than in men, with little change over calendar time. Conclusions Unlike early childhood, where taller children tend to have higher BMI, adults, especially women and older people, show an inverse BMI–height association. BMI is a heterogeneous measure of weight-for-height; height may be an important and complex determinant of BMI trajectory over the life course.Publisher PDFPeer reviewe
    • 

    corecore